3-5 Solving Equations and Formulas

Objectives:

- A.4a Solve literal equations (formulas) for a specified variable
- A.4f Apply these skills to solve practical problems

Definitions:

- An equation is a mathematical sentence that contains an equal sign (=).
- Ex: $x=y z$ What do x, y, and z stand for?
- A formula is an equation that states a rule for the relationship between certain quantities.
- Ex: $\mathrm{A}=1 \mathrm{w}$ What do $\mathrm{A}, 1$, and w stand for?

What it means to solve:

- To solve for x would mean to get x by itself on one side of the equation, with no x 's on the other side. $(\mathrm{x}=\ldots)$
- Similarly, to solve for y would mean to get y by itself on one side of the equation, with no y 's on the other side. $(\mathrm{y}=\ldots)$

The DO-UNDO chart

1) Solve the equation $-5 x+y=-56$ for x.

Ask yourself:

- What is the first thing being done to x , the variable being solved for?
-x is being multiplied by -5 .
- What is being done next?

DO	UNDO
--5	-y
+y	$\div(-5)$

-y is being added to -5 x .

Show all of your work!

- First, subtract y from both sides of the equation.
- Next, divide by -5 .
- This process actually requires LESS WORK than solving equations in one variable ;)

$$
\text { Ex: } \begin{aligned}
-5 x+y & =-56 \\
-y & -y \\
\frac{-5 x}{-5} & =\frac{-56-y}{-5}
\end{aligned}
$$

Let's try another:

Complete the do-undo chart.

DO	UNDO
$\cdot 2$	$+4 y$
$-4 y$	$\div 2$

To solve for x :

- First add 4y
- Then divide by 2

Ex: Solve $2 x-4 y=7$ for x.

$$
\begin{aligned}
& 2 x-4 y=7 \\
& +4 y+4 y \\
& \frac{2 x}{2}=\frac{7+4 y}{2}
\end{aligned}
$$

$$
x=\frac{7+4 y}{2}
$$

- This fraction cannot be simplified unless both terms in the numerator are divisible by 2 .

Another example:

- Solve $a(y+1)=b$ for y. DO UNDO
$+1 \div a$
- a - 1

To solve for y :

- First divide by a
- Then subtract 1

$$
\begin{aligned}
& \frac{a(y+1)}{a}=\underline{b} \\
& a \\
& y+1=\underline{b} \\
& \frac{-1}{a}-1 \\
& y=\underline{b}-1 \\
& a
\end{aligned}
$$

Here's a tricky one!

Solve $3 \mathrm{ax}-\mathrm{b}=\mathrm{d}-4 \mathrm{cx}$ for x .

- First, we must get all terms with x together on one side.
- Add 4cx to both sides
- Add b to both sides
- Next, use the distributive property to factor x out of the two terms on the left.
- Now, x is being multiplied by $(3 a+4 c)$. To undo this, divide both sides by $(3 a+4 c)$.

$$
+4 \mathrm{cx} \quad+4 \mathrm{cx}
$$

$$
\begin{gathered}
3 \mathrm{ax}-\mathrm{b}+4 \mathrm{cx}=\mathrm{d} \\
+\mathrm{b} \quad+\mathrm{b} \\
\hline
\end{gathered}
$$

$$
3 a x+4 c x=d+b
$$

$$
\frac{x(3 a+4 c)}{(3 a+4 c)}=\frac{d+b}{(3 a+4 c)}
$$

$$
x=\frac{d+b}{(3 a+4 c)}
$$

Try a few on your own.

- Solve $\mathrm{P}=\underline{1.2 \mathrm{~W}}$ for W . H^{2}
- Solve $\mathrm{P}=21+2 \mathrm{w}$ for l .
- Solve $4 \mathrm{x}-3 \mathrm{~m}=2 \mathrm{mx}-5$ for x .

The answers:

