\qquad
Decide whether each set of numbers is a triangle.

1) $15,12,9$
2) $23,16,7$
3) $20,10,9$
4) $8.5,6.5,13.5$
5) $47,28,70$
6) $28,41,13$
7) $5,10,15$
8) $9,40,41$
9) $12,2.2,14.3$
10) $6,9,16$

The measures of two sides are given. Between what two numbers must the third side fall.
11) 9 and 15
11) Write an inequality to represent your answer:
12) 11 and 20
12) Write an inequality to represent your answer: \qquad
13) 23 and 14
14) 5 and 8
15) 15 and 18
16) 22 and 34
16) Write an inequality to represent your answer: \qquad
17) 47 and 71
17) Write an inequality to represent your answer: \qquad
18) 21 and 47
18) Write an inequality to represent your answer: \qquad
Name the largest and the smallest angle.
19)

20)

21)

List the angles of $\Delta \mathrm{ABC}$ from the smallest to the largest.
22) $\overline{A B}=17, \overline{B C}=21, \overline{A C}=18$
23) $\overline{A B}=15, \overline{A C}=16, \overline{B C}=17$

List the sides in order, underline the side with the shortest length.
24)

25)

26)

List the sides of $\Delta A B C$ from the longest to shortest.
27) $m \angle A=46^{\circ}, m \angle B=30^{\circ}$
28) $m \angle C=101^{\circ}, m \angle B=70^{\circ}$
29) $m \angle A=59^{\circ}, m \angle C=61^{\circ}$

Find the value of x and list the sides of $\triangle A B C$ in order from shortest to longest if the angles have the indicated measures. (Hint: Find the angle measures first, then decide which sides are the longest)
30) $m \angle A=(9 x+29)^{\circ}, m \angle B=(93-5 x)^{\circ}$, and $m \angle C=(10 x+2)^{\circ}$.
31) $m \angle A=(9 x-4)^{\circ}, m \angle B=(4 x-16)^{\circ}$, and $m \angle C=(68-2 x)^{\circ}$.
32) $m \angle A=(12 x-9)^{\circ}, m \angle B=(62-3 x)^{\circ}$, and $m \angle C=(16 x+2)^{\circ}$.
33) $m \angle A=(5 x+2)^{\circ}, m \angle B=(6 x-10)^{\circ}$, and $m \angle C=(x+20)^{\circ}$.
34) $m \angle A=(10 x)^{\circ}, m \angle B=(5 x-17)^{\circ}$, and $m \angle C=(7 x-1)^{\circ}$.

Answer the following questions.
35) Draw $\triangle \boldsymbol{D E A}$ with a median $\overline{\boldsymbol{E G}}$.
36) Draw $\boldsymbol{\Delta} \boldsymbol{J} \boldsymbol{K} \boldsymbol{H}$ with an altitude $\overline{\boldsymbol{J P}}$.
37) Find the value of x.
$\overline{\boldsymbol{S O}}$ is an altitude of $\boldsymbol{\Delta \boldsymbol { S A T }}$

